Entrer un problème...
Algèbre linéaire Exemples
[1-72-103-134-16]⎡⎢
⎢
⎢
⎢⎣1−72−103−134−16⎤⎥
⎥
⎥
⎥⎦
Étape 1
Étape 1.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
Étape 1.1.1
Perform the row operation R2=R2-2R1 to make the entry at 2,1 a 0.
[1-72-2⋅1-10-2⋅-73-134-16]
Étape 1.1.2
Simplifiez R2.
[1-7043-134-16]
[1-7043-134-16]
Étape 1.2
Perform the row operation R3=R3-3R1 to make the entry at 3,1 a 0.
Étape 1.2.1
Perform the row operation R3=R3-3R1 to make the entry at 3,1 a 0.
[1-7043-3⋅1-13-3⋅-74-16]
Étape 1.2.2
Simplifiez R3.
[1-704084-16]
[1-704084-16]
Étape 1.3
Perform the row operation R4=R4-4R1 to make the entry at 4,1 a 0.
Étape 1.3.1
Perform the row operation R4=R4-4R1 to make the entry at 4,1 a 0.
[1-704084-4⋅1-16-4⋅-7]
Étape 1.3.2
Simplifiez R4.
[1-70408012]
[1-70408012]
Étape 1.4
Multiply each element of R2 by 14 to make the entry at 2,2 a 1.
Étape 1.4.1
Multiply each element of R2 by 14 to make the entry at 2,2 a 1.
[1-7044408012]
Étape 1.4.2
Simplifiez R2.
[1-70108012]
[1-70108012]
Étape 1.5
Perform the row operation R3=R3-8R2 to make the entry at 3,2 a 0.
Étape 1.5.1
Perform the row operation R3=R3-8R2 to make the entry at 3,2 a 0.
[1-7010-8⋅08-8⋅1012]
Étape 1.5.2
Simplifiez R3.
[1-70100012]
[1-70100012]
Étape 1.6
Perform the row operation R4=R4-12R2 to make the entry at 4,2 a 0.
Étape 1.6.1
Perform the row operation R4=R4-12R2 to make the entry at 4,2 a 0.
[1-701000-12⋅012-12⋅1]
Étape 1.6.2
Simplifiez R4.
[1-7010000]
[1-7010000]
Étape 1.7
Perform the row operation R1=R1+7R2 to make the entry at 1,2 a 0.
Étape 1.7.1
Perform the row operation R1=R1+7R2 to make the entry at 1,2 a 0.
[1+7⋅0-7+7⋅1010000]
Étape 1.7.2
Simplifiez R1.
[10010000]
[10010000]
[10010000]
Étape 2
The pivot positions are the locations with the leading 1 in each row. The pivot columns are the columns that have a pivot position.
Pivot Positions: a11 and a22
Pivot Columns: 1 and 2
Étape 3
The rank is the number of pivot columns.
2